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Abstract: Wireless Sensor Network (WSN) applications that favor more local computations and less
communication can contribute to solving the problem of high power consumption and performance
issues plaguing most centralized WSN applications. In this study, we present a fully distributed
solution, where leaks are detected in a water distribution network via only local collaborations
between a sensor node and its close neighbors, without the need for long-distance transmissions via
several hops to a centralized fusion center. A complete approach that includes the design, simulation,
and physical measurements, showing how distributed computing implemented via a distributed
Kalman filter improves the accuracy of leak detection and the power consumption is presented.
The results from the physical implementation show that distributed data fusion increases the accuracy
of leak detection while preserving WSN lifetime.

Keywords: distributed computing; wireless sensor networks; distributed Kalman filter; water
pipeline monitoring; distributed data fusion

1. Introduction

A Wireless Sensor Network (WSN) consists of several embedded nodes with sensing, processing
and wireless communications capabilities, distributed over an area of interest to monitor physical
or environmental conditions [1]. They are spatially distributed systems that exploit wireless
communication as the means of communication between nodes and are typically constrained in
terms of energy, computing power, memory and communication bandwidth due to their requirements
of a small size and low power consumption [2]. Application areas of WSNs include geographical
monitoring, habitat monitoring, transportation, military systems, business processes, microclimate
research, medical care and others [3,4]. In this study, we look at the state of the art of distributed
computing in WSN and propose a distributed solution to improve the accuracy of leak detection in a
WSN-based water pipeline monitoring system using low-cost vibration sensors.

1.1. WSN: Shifting towards a Distributed Approach

Most WSN monitoring applications in the literature are centralized [4,5]. This leads to the
underutilization of the processing unit and overutilization of the communication unit of sensor nodes
since the primarily role of the sensor nodes in such centralized architectures is to collect and transmit
data periodically to an intelligent central base station where all the processing is done in order to detect
anomalous behaviors [4,6,7]. In addition, in large-scale monitoring applications, most of the sensor
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nodes are geographically far away from the base station and are usually battery powered [8]. Therefore,
the drawbacks of WSNs with centralized architectures deployed in large-scale monitoring applications
are enormous bandwidth requirement and huge energy consumption as periodic transmission of raw
data over long distances, via multiple hops to the base station leads to fast depletion of sensor node’s
battery and shortens the lifespan of a WSN [7,9,10]. Other drawbacks include low reliability, longer
response time, high bandwidth cost, low level data security and privacy [7,9–12]. Some works in the
literature have demonstrated the feasibility of distributed computing in WSN and its promises of gain
in performance and lower power consumption [5,7,11–13]. By performing more local computation,
limiting exchanges only between neighboring nodes and reducing the number of messages that need
to be transmitted, distributed computing in WSN has the potential of providing a solution to the
drawbacks of the centralized approach [12–15].

1.2. The Stakes of Water Supply in Developing Countries

Water is a basic necessity for everyday life and for the effective accomplishment of many
industrial processes. In most communities, water transportation via pipelines to users seems to be
the most economical way [16] and consists of water supply systems comprising of two different parts:
(1) Transmission mains, which are pipes responsible for transporting water to tanks and (2) Water
Distribution Networks (WDN), which are pipes and service connections for distributing water to users.
However, these infrastructures are not completely watertight as even in the most recent and well-built
WDN, some level of leakage and occasional pipe bursts occur, leading to water losses [17].

Water pipeline leakages are one of a few challenges to the water utility companies all over the
world as water loss through leakages is recognized as a costly problem worldwide, due to the waste of
precious liquid, as well as from the economic point of view [18–20]. A report published by the World
Bank in 2016 indicated that in developing countries, roughly 45 million cubic meters of water are lost
daily with an economic value of over US $3 billion per year. The report also stated that saving half
of those losses would provide enough water to serve at least 90 million people [21]. In Cameroon,
the level of Non-Revenue Water (NRW), which is the portion of the total amount of water produced
for which the water utility company generates no income from (because it is lost via leaks/burst and/or
theft) is at 4.67% [22,23]. The reason for this level of NRW is explained by the aging infrastructure of
the WDN that creates physical losses through leaks and/or bursts.

Water demand is increasing continuously and rapidly as a result of the growth of the Earth’s
population, but water resources are facing a problematical and constant decrease caused by global
heating and climate change [18,24]. Unlike other more peculiar phenomena, water scarcity is common
to both developing and developed countries [18]. The scarcity of water thus requires that water losses
due to leaks be minimized by accurately detecting and localizing leakages in real time, each time they
occur. This has led to enormous research over the years in the field [25–32], providing a wide range of
methods for detecting and locating leaks in water pipelines.

1.3. Problem Statement

In recent years, WSN-based Water Pipeline Monitoring (WWPM) using vibration sensors has
become popular since the sensors offer the distinct advantage of providing real-time monitoring of
water distribution pipelines, which can prompt immediate interventions [33]. Vibration-based WSNs
can be used for pipeline monitoring because water pipeline pressure monitoring can be transformed
into acceleration monitoring of the pipe surface since from studies such as [25,34,35], a transient change
in pressure is always accompanied by an increase in the pipe surface acceleration at the corresponding
locations along the pipe length [34]. In addition, vibration sensors (accelerometers, piezoelectric
transducer, force sensitive resistors, etc.) are easy to install and less costly to maintain/operate.
While previous vibration-based WSNs have been useful in detecting leakages, they still have the
challenge of reliably detecting leaks in the midst of random environmental noise since they make
use of low-cost sensors with low accuracy [33,35,36]. However, since WWPM makes use of multiple
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low-cost sensors to monitor the pipeline, multi-sensor data fusion techniques, which have been
successfully used in target tracking [37], can be used to increase the reliability of leak detection
systems based on low-cost vibration sensors [36]. Multi-sensor data fusion combines redundant data
from multiple low-cost sensors to achieve a more accurate information whose quality exceeds that
achieved by using a single sensor [36,38]. In addition, the low-power consumption requirement
and the need for a WWPM to go unattended for a long period of time without any replacement
of the sensor node’s battery [33,39,40], affects the choice of multi-sensor data fusion technique that
can be used. Multi-sensor data fusion in WSN can either be done via a centralized, decentralized
or in a distributed manner [37,41]. The centralized data fusion technique will require multi-hop
communications, which have a higher probability of developing an energy hole in the network,
thus shortening the lifespan of the WSN [12,14,15]. Thus, using distributed data fusion may increase
the lifespan of the WSN as there is no central point for fusion and multi-hop communications will be
eliminated entirely. The objective of distributed data fusion is to use distributed computations across
the network such that the local information at each sensor node converges to the optimal value of the
centralized fusion approach [42].

1.4. Objectives of the Study

The purpose of this research is to demonstrate the benefits of trading off long-distance multi-hop
communications for computation in WSNs by exploiting the sensor node’s processing unit to implement
distributed computing. In some recent studies, distributed computing in WSNs has been proven to be
much more efficient in terms of energy and performance than the traditional centralized computation
schemes used in most WSN monitoring applications. However, most of these studies are validated
based on simulations [11–13]. Our work provides a complete systemic approach, involving simulations,
physical system design, field deployment and experimental validation. The objectives of our study
include: (1) investigate the feasibility of implementing a completely distributed solution for leak
detection in WSN-based Water Pipeline Monitoring (WWPM), (2) determine the effect of distributed
data fusion on the accuracy of leak detection and (3) measure the power consumption. We start by
simulating the distributed solution and its power consumption, we design the wireless sensor node,
then move to the field deployment which involves detecting leaks in water pipes using the proposed
distributed approach and also measuring the power consumption. In this study, we implement
distributed computing by using a distributed Kalman filter algorithm and then applied it to leak
detection in WWPM. The results indicate an increase in the accuracy of leak detection when a distributed
Kalman filter is used. In addition, we measure the power consumption of our solution.

1.5. Organization of the Paper

The rest of the paper is structured as follows: Section 2 provides a brief review of distributed
computing in WSN, its advantages and a brief survey of some studies implementing distributed
computing in WSN. In Section 3, we present the state of the art of water pipeline monitoring by
classifying leak detection techniques and reviewing some related works in WSN-based Water Pipeline
Monitoring (WWPM) using nonintrusive sensors. A detailed description of our proposed node
architecture, and the distributed Kalman filter implemented, is presented in Section 4. In Section 5,
we describe the simulation setup, the physical testbed used to demonstrate our solution and the power
consumption measurement device, while Section 6 presents the results obtained from simulations and
field experiments alongside with the discussions and, finally, Section 7 concludes the paper.

2. Distributed Computing in Wireless Sensor Networks

In this section, we provide a brief review of distributed computing in WSNs, looking at the
motivation for distributed computing in WSNs, the benefits of distributed computing in WSNs,
and presenting a brief survey of some studies that have applied distributed computing in WSNs.
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2.1. The Relevance of Distributed Computing in WSN

Despite their distributed architecture, most WSN monitoring applications are centralized, where
most of the intelligence is found out of the WSN and processing takes place at a central base station.
Sometimes, data collected from the WSN and present at the base station are transmitted to the cloud by
the base station for further processing [12]. The sensor nodes serve only as data collectors with the sole
responsibility of sensing certain phenomena of the physical world and transmitting it to the central
node for processing. In such cases, there is little or no intelligence at the sensor node level and the
sensor nodes act primarily in a sense-only fashion [43]. Most sensor nodes in large-scale monitoring
applications are far from the base station and will require enormous energy to transmit their data via a
single hop to the base station. This leads to the transmission of sensor node’s data to the base station
via multi-hop communications, since it is well known that the energy required for two sensor nodes to
communicate decreases as the distance between them decreases, often according to an inverse square
law. The multi-hop communications lead to an increase in the number of data transmission and thus
increases the overall power consumption and shortens the lifespan of a WSN by decreasing the lifetime
of every node serving as a relay. Furthermore, in the centralized approach, nodes directly connected to
the base station will be involved in relaying all the messages directed to the base station. This results in
what is referred to as the energy hole effect in some studies [12,14,15]. The energy hole effect is caused
by the uneven distribution of the energy consumption among the nodes in the network. The energy
of nodes directly connected to the base station depletes faster since they are involved in relaying all
the messages directed to the base station. As the energy of these nodes get expended, the remaining
one-hop neighbors of the base station will face an even greater load, thus creating an avalanche effect
that can quickly disable the network [12].

With all the drawbacks of the centralized computing scheme in WSN, a logical thing to do is to
perform distributed computing within the WSN. The core idea is to invest more into computation
within the network by harnessing the onboard processing capabilities embedded in each node for local
processing, alongside with local communication, i.e., those that occur between neighboring sensor
nodes in a WSN, whenever possible to save on communication costs. By distributed computing,
each node performs processing on its local data and only communicates with its direct neighbors to
reach some desired accuracy, thus, minimizing the amount of multi-hop communications as much as
possible through local collaboration among sensor nodes.

As a result of the fast development in microelectronics, more powerful sensor node processing
units (microcontrollers) are being developed with higher computational and memory capability but
consuming lower power [2,44–46]. This is reducing the challenges of embedding intelligent data
processing on sensor nodes. For this reason, distributed computing is becoming increasingly popular
in most WSN monitoring applications [2,44,45]. The presence of distributed sensing in a WSN and
the availability of computing resources at each sensing node can be properly harnessed by using
distributed algorithms that minimize communication and energy costs as well as provide robustness to
node failures [11]. This creates a scenario where the sensor nodes can communicate among themselves
and perform distributed computation over the sensed data to identify the occurrence of an event [4].
This improves on the scalability of WSNs, reduces latency as well as network energy consumption,
and also improves data security and privacy [8,10,12].

2.2. WSN and Edge Computing

In the last decade, the term Internet of Things (IoT), has progressively gained dominance as the
keyword to define connected embedded devices. It replaces the pioneer term WSN, which is one of
the first physical implementations of Ubiquitous Computing, and finally integrates it as a part of IoT
(the physical network mainly used for monitoring).

With research progress in this field, numerous computing paradigms have emerged such as
Mobile Cloud Computing (MCC), cloudlet computing, mobile clouds, mobile IoT computing, IoT cloud
computing, fog computing, Mobile Edge Computing (MEC), and edge computing [47]. The latter,
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edge computing [48], could be considered as a related field of WSN distributed computing. However,
what differs between WSN and IoT is the hardware computation capacity. Recently, the Internet
Engineering Task Force (IETF) [49] standardized a classification for devices that use the Internet
that demonstrates that a performance gap exists between the lowest class, i.e., Class 0, dedicated to
WSN [50] and Class 1 and above, which comprise the hardware commonly found in IoT.

Furthermore, given that wireless sensor nodes are highly constrained in terms of computation
capacity and energy consumption, the promising capacity of edge computing has not been evaluated
here due to the gap between the hardware capacity of connected devices involved in each of the
networks (WSN and IoT) [51] and those developed using a state-of-the-art energy-aware hardware
design for edge computing by Jiang et al. [52]. Even though paradigms and algorithmic propositions
emerging from edge computing could be of interest, issues such as portability efforts and shrinking
requirements needed to transfer software from medium- to high-performance computing units to
highly energy-constrained and low-power computation capacity hardware targets led the authors to
focus this study on distributed computing for low-cost/low-performance, battery-powered and highly
constrained sensor networks [37].

2.3. A Survey on Distributed Computing in WSN

According to Stula et al. [53], distributed computation is any process conducted by multiple
agents or entities that perform operations on information and together generate resulting information,
and can be defined and observed in terms of memory, communication, and processing. Huang, in [5],
classified the applications of distributed computing in WSN according to the following taxonomy:
Distributed Query Processing, Collaborative Signal Processing, or Distributed Estimation and Detection.
Other applications of distributed computing in WSN include: local (in-node or on-sensor or edge)
processing and in-network processing.

In-network processing involves the processing of data as it travels via the WSN to the sink.
For example, Serpen and Liu [13] demonstrated through simulations, a case study that leverages
existing WSNs as a parallel and distributed hardware platform to implement computations for
artificial neural network algorithms. The results of their simulation suggest that the WSN-based
neurocomputing architecture is a feasible alternative for realizing parallel and distributed computation
of artificial neural network algorithms. However, their study does not consider the energy constraint
of WSN as they assumed that the sensor nodes are not limited in energy supply. In another study,
Pascale et al. [12] proposed an in-network processing framework to tap into the collective computation
capability of Internet of Things (IoT) devices by coupling data communication and processing for
the transformation of raw data into appropriate actions as it travels via the network towards the
actuating nodes. Their results showed that distributed computing decreases the latency and improves
the distribution of energy consumption among the sensor nodes, thus mitigating the energy hole
effect and increasing the expected lifetime of the network. However, the results were validated by
simulations in Cooja.

In collaborative signal processing, also referred to as Wireless Distributed Computing (WDC),
a master node which needs to perform a complex computational task in a limited time frame divides
the computational task into a number of subtasks and then assigns these subtasks to some slave nodes
(neighboring nodes) [54]. In [9], the authors discussed some of the possible applications of WDC such
as image processing and pattern recognition, distributed data storage and database search, Synthetic
Aperture Radar (SAR) processing, etc. Energy savings in WDC were demonstrated in this study by a
wireless ad-hoc network comprised of a tactical handheld, radio nodes attached to a UAV, or sensor
nodes. The findings showed that the reduction in energy consumption of the wireless nodes is achieved
firstly by the fact that WDC enables processing within the network which reduces number of bits
transmitted over the long backhaul at the cost of computational energy consumption. Chiasserini
in [55] extended the concept of collaborative signal processing in WSN by using a collaborative
computational algorithm and communication scheme where the sensor nodes were made to operate as
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a Distributed Digital Signal Processor (DDSP). Fast Fourier Transform (FFT) algorithm was applied
to the DDSP approach and the results showed that the energy consumption obtained at different
processing frequencies when the FFT is computed by a single sensor node were higher compared to
the results derived in the case where the computation is distributed among multiple sensor nodes.

In the case of local processing, raw data are processed locally at the sensor node using its
processing unit, and only the analyzed results are transmitted via the WSN to the sink. Feng et al.,
in [56], implemented an envelope analysis algorithm on a WSN node composed of a cortex-M4F core
processor for feature fault extraction in a condition monitoring application using vibration sensors.
The results from the study showed that the sensor node was able to identify simulated faults and achieve
real-time condition monitoring while reducing the data transmission throughput by 95%. In another
study, Kartakis et al. [8], presented an end-to-end water leak localization system, which exploits
edge processing in battery-powered sensor nodes. The sensor nodes were based on Intel Edison
development boards and NEC Tokin ultra-high-sensitivity vibration sensors and the proposed system
combined a lightweight edge anomaly detection algorithm based on a Kalman filter and compression
rates and a localization algorithm based on graph theory. According to the authors, the edge anomaly
detection and localization elements of the systems produce a timely and accurate localization result
and reduce the communication by 99% compared to the traditional periodic communication.

In distributed state estimation and detection applications, the WSN makes a decision about the
value of a physical variable (estimation) or the occurrence of an event (detection) in a distributed manner.
Distributed State Estimation (DSE) algorithms implement distributed data fusion, where neighboring
nodes communicate with each other to improve the accuracy of the monitored parameter. In [57],
the performance of a local Kalman filter and a distributed Kalman filter is evaluated experimentally
using an ultrasound-based positioning application composed of a sensor network with seven sensor
nodes. There is no centralized computation and the goal is to make sure that every node in the network
has an accurate estimate by performing computations in a distributed manner and communicating only
once per sampling interval. Battistelli et al., in [58] presented a novel event-triggered distributed state
estimator based on a consensus Kalman filtering approach as well as a transmission triggering condition,
while He et al., in [37], reviewed distributed Kalman filter algorithms for low-cost sensor networks.

In this study, we experimentally demonstrate the ability of distributed computing to improve the
reliability of anomaly detection in WSN monitoring since most of the works available in the literature
are based on simulations. We compare local processing (implemented by a local Kalman filter) and
distributed state estimation (implemented by a distributed Kalman filter) based on results obtained
from simulations and physical experiments, in a WWPM system that uses low-cost vibration sensors
for leak detection.

3. State of the Art of Water Pipeline Monitoring

In this section, we first perform a general classification of the leak detection technique used in
water pipeline monitoring and then focus on WWPM. We review some works in the literature that are
closely related to our study and which use WSNs with nonintrusive sensors for leak detection in WDN.
The survey is based on the node architectures, the type of sensors and pipe material used, the location
where the leak signals are analyzed to detect the presence or absence of leaks, and the leak detection
algorithm implemented in each of these studies.

3.1. Classification of Leak Detection Techniques

The detection and localization of water pipeline leakages are important to water utility companies
because of the need to conserve raw/treated water and save associated costs [19]. A lot of research
efforts have been dedicated to the development of a vast variety of techniques for leak detection
and localization to minimize water losses caused by leaks [30]. Based on their technical approach,
Adedeji et al. [20], Baroudi et al. [36], Adegboye et al. [59], and Torres et al. [29] in their survey papers
on pipeline monitoring categorized leak detection techniques in water pipelines as either external or
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internal. In other surveys, Ismail et al. [25] classified leak detection techniques into software-based
methods and hardware-based methods while Chan et al. [60] classified them as active and passive
systems. The software-based and hardware-based methods of Ismail et al. [25] and active and passive
systems of Chan et al. [60] are likened to the internal and external methods of [20,29,36,54], respectively,
as shown in Figure 1. In another study, El-Zahab et al. [30] classified leak detection systems into
two major classes, i.e., static leak detection systems and dynamic leak detection systems. Static leak
detection systems rely on sensors capable of sensing leak signals, coupled with a communication
technology while dynamic leak detection systems require the mobilization of a leak inspection team
that delivers the devices to the suspected leak site to perform an inspection and confirm or clear the
suspicion [30]. Most software-based (internal or active) and hardware-based (external or passive) leak
detection techniques are static, as shown in Figure 1.Sensors 2020, 20, x FOR PEER REVIEW 8 of 39 
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In the sub-sections below, we briefly explain software-based and hardware-based methods of leak
detection, highlighting the various techniques in each of the categories and stating their advantages
and disadvantages.

3.1.1. Software-Based Methods

The software-based methods use field sensors to monitor the operational and hydraulic conditions
of the pipeline, such as the measurement of the flow, pressure and temperature [16,25,36,54] and
smart computational algorithms to process the measurements in order to detect and localize the
occurrence of leaks on the pipeline [29]. Some of the software-based methods available in the literature
include methods based on model estimation (e.g., Kalman filter [19,29,61], state observer [62], system
identification [63], the impedance method [64]), methods based on signal processing (Negative Wave
Pressure [32], Mass Balance [65], Pressure Point Analysis [66], Acoustic Correlation Analysis [67],
Spectral Analysis Response [68]) and data-driven methods (Support Vector Machine [69], K-nearest
neighbor [70], Naïve Bayes [69]). They involve the use of either intrusive sensors or non- intrusive
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sensors to monitor the internal pipeline parameters. Those that make use of intrusive sensors are
difficult to install but provide high accuracy whereas those that make use of nonintrusive sensors are
easy to install but provide low accuracy in leak detection. As an advantage, they can make use of a
WSN and they are also cost effective.

3.1.2. Hardware-Based Methods

The hardware-based methods detect the presence of leaks from outside the pipeline by visual
observation or by using specialized equipment that range from simple listening rods to more
sophisticated approaches as inspection gauges sending magnetic fields, electromagnetic waves
or ultrasound through a pipeline’s walls [16,25,36,54] for physical monitoring. They use local sensors
to send an alarm when a leak occurs, and do not perform computation for diagnosing a leak [29].
Some examples available in the literature include acoustic techniques [71], tracer gas techniques,
fiber optic sensing techniques [72], ground-penetrating radar techniques [73], magnetic induction
techniques [74], etc. As a disadvantage, they may involve the use of expensive instruments, some are
labor intensive and also do not make use of WSNs in monitoring. As an advantage, they are highly
sensitive to leaks.

Figure 1 illustrates the classification of leak techniques into static and dynamic methods, followed
by hardware-based and software-based methods. A detailed survey of these techniques along with
a comparison can be found in [16,20,25,31,36,54,55]. In this study, our focus is on leak detection
in WDN using WSN. The need to explore pipeline monitoring schemes that incorporate WSNs is
advantageous because WSNs are easy to deploy and flexible enough to be installed in any environment.
WSNs provide effective solutions for pipeline monitoring, due to its low cost, flexibility and ease of
deployment in inaccessible terrain [16,33,36].

3.2. WSN-Based Water Pipeline Monitoring

3.2.1. Introduction

WSN-based Water Pipeline Monitoring (WWPM) systems are practically developed from two main
parts: the sensors/equipment installed along the pipeline that periodically collect useful information
relating to some pipeline parameters and the algorithms that process this information in order to
detect and localize leaks in the pipeline [26]. Typically, the remote field sensors provide data to a
centralized monitoring station (for centralized systems) or fusion center (for decentralized systems),
where the data undergo filtering, signal processing and are later fed into leak detection algorithms to
identify a leak. The fusion center used in decentralized systems is a local aggregation unit present
in the field and may have a direct communication with the base station, which collects data from
the sensor nodes within a cluster and locally processes them [32,37,41,75]. In most leak detection
systems, a difference between the measured and predicted operational parameters indicates a leak [36].
The biggest problem with leak detection in WWPM using low-cost sensors is that the leak signals may
be inaccurate due to the low sensitivity of the sensors and environmental noise and may result in false
alarms in the leak detection system. Thus, the issue of reliably identifying a leak signal in the midst
of errors from a number of sources (commonly called noise) is a fundamental challenge of any leak
detection system [33,76].

Depending on where the leak signals from remote sensors are filtered, where preprocessing
of the leak signals takes place and where the leak detection and leak localization algorithms are
executed, WWPM solutions can be classified as either centralized, decentralized or distributed. In order
to have a good understanding of all the significant WWPM approaches available in the literature,
we propose the criteria given in Table 1, which provides a description of the attributes we used to
classify WWPM studies available in the literature. Our focus is on WWPM studies that monitor the
pipe surface vibration as an indirect method of monitoring the pressure fluctuations caused by leaks
in the pipeline and that make use of nonintrusive (vibration-based) sensors (e.g., accelerometers,



Sensors 2020, 20, 5204 9 of 38

piezoelectric transducers, force sensitive resistor, etc.). The algorithms for processing the leak data
(pipe surface vibration) used in these studies fall in the transient, balancing and signal processing
methods of leak detection techniques shown in Figure 1.

Table 1. List of criteria for comparing selected WWPM.

Criterion Description

Parameter monitored This is a feature of the pipeline system that is detected by the sensor and
used for leak detection after processing.

Sensor Nature of the sensor used in the study to detect leak signals

Pipe material Type of pipe that was used in the study. It can be metallic (e.g., steel) or
plastic (e.g., Polyvinyl Chloride (PVC))

Pre-processing (PP) Technique used for pre-processing (e.g., filtering) the leak signal

Leak Detection (LD) Technique used for processing the leak signal to detect the presence or
absence of a leak.

Leak Localization (LL) Technique used for identifying the location of the leak.

Location of Processing Processing can be done at the Base Station (BS), Fusion Center (FC) or at
the Sensor Node (SN).

Monitoring type

Classifies pipeline monitoring into Centralized, Decentralized,
or Distributed based on the location where processing takes place.
Centralized: all processing takes place at the BS.
Decentralized: part of the processing (PP and/or LD) take place at the SN
and/or FC.
Distributed: all processing takes place at the SN.

3.2.2. A Review on WWPM Studies

A challenge associated with all vibration-based pipeline leak detection techniques is the possibility
of potential false alarms caused by environmental perturbations unrelated to the state of the
pipe [33,35,77]. In addition, the sensor needs to be placed at a small distance from the leak, since wave
attenuation in plastic pipes is strong [68]. This will result in an increase in the number of sensors
required for leak detection and will result in a higher system cost if high-cost sensors are used. The use
of low-cost vibration sensors can reduce the cost of the leak detection system, but the leak detection
system will be prone to false alarms since low-cost vibration sensors have a lower accuracy. In this
sub-section, we focus on some representative vibration-based WWPM studies and compare them
based on the criteria listed in Table 1. Table 2 is a summary comparison of selected studies in the
literature that monitor pipelines using WSNs and make use of nonintrusive sensors. As can be seen
from Table 2, most of the existing WWPM studies are either centralized or decentralized since they
require processing at the base station in order to detect and localize leaks.



Sensors 2020, 20, 5204 10 of 38

Table 2. Summary comparison of some selected studies in WWPM.

Ref Monitored Parameter Sensor Pipe Material Pre-Processing
Technique Leak Detection Algorithm Leak Localization

Algorithm
Location of
Processing

Monitoring
Type

[8] Pipe’s surface vibration Vibration Sensor
(NEC Tokin) N.A Kalman filtering Compression rates analysis Graph-based

technique

PP: SN
LD: SN
LL: BS

Decentralized

[25] Pipe’s surface vibration
Accelerometer

(MPU6050, ADXL335 and
MMA7361)

Plastic
(polyethylene) N.A Offline analysis N.A

PP: N.A
LD: BS

LL: N.A
Centralized

[26] Pressure Force sensitive resistor Plastic
(polyethylene)

Kalman filtering and
compression Predictive Kalman Filter Time of arrival

difference

PP: SN
LD: SN & FC

LL: FC
Decentralized

[27] Acoustic signals and
pipe’s surface vibration

Hydrophones and
accelerometers

Plastic
(Polyvinyl Chloride)

Fast Fourier Transform
(FFT) and compression

Acoustic leak detection
technique Cross-correlation

PP: SN
LD: BS
LL: BS

Decentralized

[28] Pressure
(Force sensitive resistor)

Temperature and pressure
sensors

Plastic
(Polyvinyl Chloride) N.A Relative pressure change N.A

PP: N.A
LD: BS

LL: N.A
Centralized

[67] Acoustic signals Acoustic sensors Metallic N.A Acoustic emission technique Cross-correlation
method

PP: N.A
LD: BS
LL: BS

Centralized

[68] Pipe’s surface vibration Accelerometer
(KB12(VD)) Plastic (polyethylene) Moving average

Fast Fourier Transform,
Wavelet Transform, Power
Spectral Density and Cross

Spectral Density

N.A
PP: BS
LD: BS

LL: N.A
Centralized

[78] Pipe’s surface vibration Piezoelectric transducer Plastic
(Polyvinyl Chloride) Amplification Amplitude thresholding and

FFT
Localization based

on leak index

PP: BS
LD: BS
LL: BS

Centralized

[79] Pipe’s surface vibration IEPE accelerometer Plastic (polyethylene) Signal filtering and
amplification

Standard deviation
computation N.A

PP: SN
LD: BS

LL: N.A
Centralized

[80] Pipe’s surface vibration vibration sensor N.A N.A Power Spectral Density and
Cross Spectral Density

Modified Maximum
Likelihood prefilter

PP: N.A
LD: BS
LL: BS

Centralized
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The study of Stoianov et al. [27], referred to as PipeNet, is one of the pioneering vibration-based
WWPM solutions that provide real-time leak detection. On the basis of an Intel commercial mote
composed of an ARM7 core, 64 kB of RAM, 512 kB of Flash, and a Bluetooth radio for communication,
a laboratory pipe rig was built to demonstrate the detection and localization of leaks using acoustic
and vibration data acquired from densely spaced hydrophones and accelerometers installed along
the pipeline. Local processing was performed at each node by a Fast Fourier Transform (FFT)
implementation combined with a compression, while cross-correlation was implemented at the central
server as the leak detection and localization algorithm. The study provides a real-time solution for leak
detection, but it is not energy efficient due to the high sampling rate and processing algorithms that
were used.

In [28], Sadeghioon et al. present the design and development of a multimodal Underground
Wireless Sensor Network (UWSN) for pipeline structural health monitoring. They developed a
sensor node consisting of a 16-bit microcontroller from Microchip, implementing their nano-watt XLP
technology (PIC16LF1827), an eRA400TRS 433 MHz transceiver, two temperature sensors and one
Force Sensitive Resistor (FSR) pressure sensor. According to the authors, the power consumption of
the sensor nodes was minimized to 2.2 µW based on one measurement per 6 h in order to prolong
the lifetime of the network. In regard to our approach, two drawbacks could be highlighted from
this work: the first one is the inability to perform real time monitoring and the second one lies in the
classic drawbacks from adopting a centralized approach for leak detection—reduced efficiency for a
large-scale WSN, as it induces high latency and uneven energy distribution.

Martini et al. [79], in a series of tests in Bologna, used low-cost accelerometers attached to plastic
pipes close to water meters in the city. They proposed to solve the problem of the high false alarm
rate caused by the low accuracy of low-cost sensors and the inability of reliably detecting leakages
in the midst of environmental noise, by taking measurements only during quiet times, for example,
during the night when activities are reduced. However, one drawback with this approach is that does
not operate in real time, as leaks cannot be immediately detected whenever they occur. Another reason
is that it is difficult to find quiet times in certain areas such as city centers.

In [26], Karray et al. propose a solution called EARNPIPE which is comprised of a Leak Detection
Predictive Kalman Filter (LPKF) and Time Difference of Arrival (TDOA) to detect and locate leaks.
The data collected from sensors were filtered, analyzed and compressed locally with the same Kalman
Filter (KF)-based algorithm. A laboratory testbed was set with plumbing components and a network
was deployed, consisting of nodes composed of Arduino Due board (with an ARM cortex M3
microcontroller inside), FSR sensors used for measuring pressure and Bluetooth for communication.
In this work, the high consumption of the Arduino Due board combined with the power hungriness
of Bluetooth communication resulted in high consumption profiles and then a shortened lifetime
for the network. The centralized approach adopted for leak detection and localization is another
drawback [12].

Ismail et al., in [25,35,77], presented the development of a water pipeline monitoring system using
low-cost off-the-shelf components. The experimental setup consisted of low-cost vibration sensors
such as MPU6050, ADXL335 and MMA7361 sensors for the measurement of vibration occurring along
the pipes, an Arduino Uno and an XBEE module for wireless transmission to a centralized decision
support system. Their work showed that low-cost off-the-shelf components can be effective for leak
detection in plastic pipes. Their solution was capable of distinguishing a leak from a non-leak for a
leak coming from a 1-mm hole when the pressure was above 58.8 kPa. The drawbacks of this solution
include the high rate of false alarms and the fact that it does not operate in real time.

In [8], Kartakis et al. presented an end-to-end water leak localization system, which exploits edge
processing and enables the use of battery-powered sensor nodes. The proposed system combined
a lightweight edge anomaly detection algorithm based on a Kalman filter and compression rates
and a localization algorithm based on graph theory. It was validated by deploying nonintrusive
sensors measuring vibrational data on a lab-based water test rig that had controlled leakage and burst
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scenarios implemented. The sensor nodes were based on Intel Edison development boards (embedding
a dual-threaded Intel Atom CPU at 500 MHz and a 32-bit Intel Quark microcontroller at 100 MHz, 1 GB
LPDDR3 POP memory as RAM and 4 GB eMMC as flash storage) and NEC Tokin ultra-high-sensitivity
vibration sensors. The main drawback of this work is that the choice of commercial element (Intel
Edison board) that constitutes the sensor node is not really a WSN node stricto sensu since it belongs
to the Raspberry device class, with an energy efficiency and cost effectiveness that are beyond the
specifications corresponding to WSN performances. In addition, they made use of a high-accuracy
NEC Tokin Ultrahigh-Sensitivity vibration sensor to monitor the pipe surface vibration. However,
even though our study is focused on using low-cost, low-accuracy vibration sensors for reliable leak
detection, this article shows that edge computing has an emerging presence in the field.

Given the drawbacks of the solutions proposed in the literature, considering the geographic
context of our deployment, which is to be done in Cameroon (a third-world developing country),
and being aware of the fact that the choice of architecture and technology of the sensor node is crucial
in determining its performance and power consumption, we seek a reliable vibration-based solution
that operates in real time, is fully distributed, low cost, nonintrusive and also energy efficient. As a
method of increasing the effective isolation of leakages in the midst of noise, we propose the use of a
distributed Kalman filter (a distributed data fusion algorithm) as our leak detection algorithm.

4. Materials and Methods

In this section, we present a description of the off-the-shelf commercial components that make up
the sensor node hardware and the leak detection algorithm we implemented.

4.1. Sensor Node Architecture

The architecture and technology of a sensor node is crucial in determining its cost, performance
and power consumption. A fully distributed solution for leak detection in WWPM requires distributed
computation, where the onboard processing capabilities of each sensor node must be capable of
running the filtering, leak detection and localization algorithms. This requires the sensor nodes to
operate more than just data collectors as they were initially designed for, to full-fledge information
processors. Some of the main requirements of large-scale WSNs include a low power consumption
and the ability to be operational for a long period of time without the replacement of the sensor node’s
battery. To reduce power consumption, the computational capabilities of sensor nodes were designed
to be very low, and this made nodes act as mere data collectors and wireless relays. The small physical
size and low power consumption led to the development of first-generation sensor nodes [2]. The first
generation of sensor nodes made use of 8-bit microcontrollers and examples include Tmote Sky, MicaZ,
Mica2, Micadot, etc. [81]. The main disadvantage that makes them not suitable for deployment in
our fully distributed solution is their limited computational performance (in terms of computing
speed and the size of RAM and flash memory) as little or no processing of the collected data can be
done onboard. The combination of 16-bit microcontrollers such as MSP430 and the CC2420 radio
transceiver led to the development of second-generation sensor nodes [81] with examples such as
TelosB. The second-generation sensor nodes permitted some level of storage and preprocessing at the
sensor node level but are still not sufficient for a fully distributed solution. The third-generation sensor
nodes were initially introduced by a generation of 32-bit microcontrollers solutions based on ARM
Cortex –M0/M0+/M3/M4 and PIC32MX [46]. This was later reinforced by the emergence of the second
generation of low-power 32-bit microcontrollers (led by ARM Cortex M7, dual core ESP32 and faster
PIC32MZ) in the period between 2015 and 2016, and this strengthened the use of third generation sensor
nodes in performing local processing [46]. Common features of this generation of microcontrollers
include low power consumption, the integration of powerful digital signal processing units, support of
both Wi-Fi and Bluetooth network connection and having the larger RAM and Flash memory necessary
for performing complex processing on the collected data onboard [46]. The 32-bit ARM Cortex M series
microprocessors have a better performance and a lower power consumption compared to the 32-bit
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Xtensa LX series microprocessors [46]. For example, the single-core STM32L562ME microcontroller
(based on ARM Cortex M33), operating at 110 MHz, consumes less power and has a performance
almost equivalent to the dual-core ESP32 microcontroller (based on Xtensa LX6) operating at 240 MHz.
In addition, the ST ARM Cortex M7 microcontroller consuming 110 mA has almost five times more
performance than the ESP32 consuming 68 mA [46]. A great advantage of the ESP32 is its Ultra-Low
Power (ULP) coprocessor which gives it the ability to operate at ultra-low power for most WNS
operations and only use the dual core when needed. Another advantage that adds to the previous one
is its lower cost, which is a suitable feature for sensor nodes to be deployed in a developing country’s
WWPM solution.

One example of a powerful, low-cost and low-power consumption microcontroller is the ESP32,
which was released in the last quarter of 2016. This microcontroller incorporates a double-core 32-bit
Xtensa LX6 microprocessor and an Ultra-Low Power (ULP) coprocessor which consumes very little
power (between 10 µA~150 µA) when the main core is sleeping and can be used for basic control.
This ULP feature makes it a suitable processing unit for a WSN node that will be battery powered.
In addition, the ESP32 incorporates WiFi and Bluetooth modules which makes it Internet of Things
(IoT) compatible. Incorporating such microcontrollers into the sensor node’s hardware, will cause the
nodes to evolve from simple sensors to rich computing platforms that may even include dedicated
Field Programmable Gate Array (FPGA) accelerators [44]. Our aim is to develop a high-performance,
low-cost and low-power sensor node by integrating cheap and low-power off-the-shelf commercial
components. Our proposed node consists of an ESP32 from Espressif Systems as the processing unit,
an nRF24L01+ transceiver module from Nordic as the communication unit and an LSM9DS1 Inertia
Measurement Unit (IMU) from STMicroelectronics as the sensing unit.

4.1.1. ESP32

ESP32 is a low-cost, low-power System-On-Chip (SOC) increasingly used in the hobby and
research development of connected embedded systems. This chip is widely used in tiny devices
embedding Python or its derivatives (MicroPython, CircuitPython, etc.) for wireless embedded
systems driven by a strong community such as Pycom [82] or CircuitPython [83]. This chip, although
quite unused in traditional WSN hardware [44], has two main advantages: a 32 bit dual-core unit
and an Ultra-Low-Power Processor (ULP) for low computation tasks. Last but not least, it presents
wide support for conventional Operating Systems but also for more prospective Real-Time Operating
Systems such as RIOT [84], Zephyr or Zerynth [85].

From a technical point of view, the ESP32 offers:

- for computation: an Xtensa Dual-Core 32-bit LX6 microprocessor operating at up to 240 MHz,
a 520-kB Static Random-Access Memory (SRAM), a 4-MB flash memory.

- for interfacing: a 12-bit Analog-to-Digital Converter (ADC) with up to 18 channels and 40 physical
General Purpose Input Output (GPIO) pads, which can be used as general purpose I/O to connect
new sensors, or can be connected to an internal peripheral signal [10].

- for communication: a built-in Wi-Fi card supporting IEEE 802.11 b/g/n standards, Bluetooth
version 4.2 and 486 Bluetooth Low Energy (BLE). Dedicated RF transceivers (such as nRF24L01+)
can be added through GPIO to extend the RF physical layer support of ESP32 to IEEE802.15.4
protocols commonly used in the WSN community.

Engineered for mobile devices, wearable electronics, and IoT applications, the ESP32 offers
advanced power management features such as Ultra-Low Power (ULP) consumption through power
saving features including fine-resolution clock gating, multiple power modes, and power scaling [10].
The ESP32, when active (with the modem being off and CPU being operational), consumes currents
in the [20 mA–68 mA] range and in the [10 µA–150 µA] while performing in the ULP state (only the
RTC memory, RTC peripherals and the ULP co-processor are functional). The choice of this module is
based on our exploration of different sensor node architectures existing in the literature [10,44,46,86].
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Beyond its computation capacity coupled with an ultra-low processor, the wide coverage of the RF
physical layer (Wi-Fi, Bluetooth and Zigbee ability) made the ESP32 an evident choice for our study.

4.1.2. nRF24L01+

The CCXXXX (i.e., CC1000—the first generation of WSN, CC2420—the majority of WSN nodes
developed in 2000s and 2010s, and CC2520—the new generation of WSN nodes) transceiver series
from Texas Instruments are the most commonly used communication units in Wireless Sensor Nodes
hardware development. However, we decided to use the nRF24L01+ due to its low power consumption
on the one hand and for its burst mode (increased data rate) on the other hand. Even though the
nRF24L01+ does not directly implement a mesh network at the MAC layer, the single dimensional
aspect of our linear WSN reduces this drawback significantly.

Compliant with the IEEE802.15.4 standard at the hardware level, this transceiver operates in
the (2.400–2.4835 GHz) band, exhibits current peaks in RX/TX modes lower than 14 mA (one of the
lowest consumptions on the market), a sub-µA power down mode, advanced power management,
and a supply voltage extending from 1.9 to 3.6 V. The nRF24L01+ is hence a true ultra-low power
solution enabling months to years of battery life from coin cell or AA/AAA batteries. The burst mode is
particularly interesting for distributed computing, which involves only short-distance communications
between neighboring nodes and thus leads to a high data rate while keeping a low transmission power.

At the physical layer, nRF24L01+ implements Gaussian Frequency Shift Keying (GFSK) modulation,
with data rates ranging from 250 Kbps to 2 Mbps. A communication range of nearly 100 m and 500 m
can be achieved with and without an external antenna, respectively, at maximum power [87,88]. It is
the perfect complementary RF transceiver for our node since it covers a longer range compared to
Bluetooth, consumes less power than Wi-Fi and it is quite cheap from a financial point of view.

4.1.3. LSM9DS1

LSM9DS1 is a nine Degrees of Freedom (DOF) IMU which features a 3D digital linear acceleration
sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor. The LSM9DS1 has a linear
acceleration full scale of ±2 g/±4 g/±8 g/±16 g, a magnetic field full scale of ±4/±8/±12/±16 Gauss and an
angular rate of ±245/±500/±2000 dps (degree per second). It includes an I2C serial bus and an SPI serial
standard interface for interfacing with the microcontroller. It has an analog supply voltage ranging
from 1.9 V to 3.6 V and provides an ultra-low current consumption of 600 uA when the accelerometer
is in the normal mode [89]. It has three 16-bit ADCs for digitizing the accelerometer outputs which
can result in more accurate digital outputs and has a wide accelerometer range for tracking both slow
and fast motions. In addition to the low-power consumption feature of the LSM9DS1 IMU, another
interesting feature of this sensor which makes it relevant to achieving low-power consumption is the
ability of the sensor to generate an interrupt once the acceleration measured is above a predefined
threshold value. With this property, the ESP32 can be programmed to operate in deep sleep mode most
of the time. The LSM9DS1 will continuously monitor the pipes at all times for any deviation from the
predefined threshold value. Upon deviation detection, the sensor sends an external wake-up interrupt
signal to start the ESP32 main core. Thus, this threshold detection property of the LSM9DS1 makes it
very useful in providing a low-power solution, as it can be used to reduce the power consumption of
the sensor node and extend the lifespan of the WSN. It is also low cost.

4.2. Configuration of the Node

The nRF24L01+ transceiver module and LSM9DS1 IMU sensor are interfaced with the ESP32
via the SPI and I2C interfaces, respectively. The sensitivity of the accelerometer in the LSM9DS1
sensor is configured to ±2 g since this has the highest sensitivity (0.061 mg/LSB), which makes it most
appropriate for detecting vibrations of smaller magnitudes such as those on the surface of a water pipe.
The accelerometer collects the vibration in 3D, that, is in the X, Y and Z directions given by Ax, Ay and
Az, respectively. The magnitude of the vibration on the surface of the pipe was computed by taking
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the resultant acceleration in all three directions. Figure 2 represents the hardware configuration of the
sensor node.
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4.3. Leak Detection Algorithm

When a leak occurs, there is a transient change in the water pressure, which leads to a drop
in the internal pipe pressure and an increase in the pipe surface vibration [34,60]. The pipe surface
vibrations resulting from the sudden drop in pressure can be detected by an accelerometer. However,
since low-cost sensors are used in our case study, their readings might be inaccurate and also be
drowned out by noise from the surrounding and operational conditions such as the opening/closing of
pumps, valves, etc. For this reason, an appropriate leak detection algorithm is required for processing
the measured vibration data to improve on the accuracy of detecting leaks. To maximize leak detection
and minimize the number of false alarms without involving any form of centralized computation,
we proposed the use of a Distributed Kalman Filter (DKF), which is simply a combination of a
local Kalman filter and distributed data fusion, as the leak detection algorithm. In this sub-section,
we explain the reason for our choice of this algorithm and the implementation of the algorithm.

4.3.1. Reasons for the Choice of Leak Detection Algorithm

Price often has a direct bearing on the quality of a node’s sensors and influences the accuracy of
the result that can be obtained from a single node [90]. Thus, using low-cost nonintrusive sensors in
WWPM to detect leak signals is usually characterized by inaccurate measurements and may result in
false alarms in the leak detection system. According to Figure 1, the computational algorithms used for
processing and analyzing leak signals from field sensors in order to detect the presence of leaks on a
WDN can be categorized into signal processing, model-based and data-driven algorithms. The signal
processing algorithms extract information from the measured data and compare it with data sets from a
fault-free benchmark so as to detect the presence or absence of a leak. Most signal processing algorithms
analyze data in the frequency domain, and thus require mathematical conversion [91]. This makes them
computationally intensive and will result in huge power consumption when implemented on sensor
nodes. The model-based methods usually involve the use of mathematical functions or formulas to
represent or replicate the operation of a WDN. They can determine the approximate leakage location by
comparing pressure or flow measurement with their estimation obtained using the hydraulic network
model [60]. The drawback with the model-based methods is that they require a precise mathematical
model of the pipeline system in order to accurately detect leaks. With the data-driven methods, large
amounts of data are being collected and used to analyze, interpret, and extract useful information for
operational and other purposes based on Artificial Intelligence (AI) techniques and other data-driven
methods [61]. Their drawback is that they need a large amount of data and a long training time [61].

In recent studies such as Karray et al. [26] and Kartakis et al. [8], the Kalman filter has been used as
a signal processing algorithm for filtering the leak signals obtained from nonintrusive sensors installed
on the pipeline in order to detect leaks. The Kalman filter analyzes data straightforwardly in the time
domain, which makes it computationally less intensive and thus suitable for implementation on a
sensor node. The study of Karray et al. [26] is a centralized solution while that of Kartakis et al. [8] is a
decentralized solution for leak detection in WWPM. However, our work is focused on providing a
fully distributed solution for leak detection in WWPM and for this reason we propose the use of a



Sensors 2020, 20, 5204 16 of 38

Distributed Kalman Filter (DKF). To the best of our knowledge, this is the first work that uses WSNs
with nonintrusive sensors and a DKF for leak detection in WWPM. The idea is to provide a solution
that will improve the reliability of leak detection and also provide a fully distributed solution that
curbs the limitations of centralized solutions, i.e., high latency (due to multi-hop communication),
scalability issues and high power consumption. In our proposed solution, each sensor node runs a
local Kalman filter to obtain an accurate local estimate from the local measurements, then later fuses it
with those of its neighbor to achieve a more accurate global estimate used for leak detection. In this
way, our proposed solution is autonomous and does not need any central intelligence.

In [37], He et al. did a review on a number of DKF algorithms for low-cost sensor networks.
According to their classification, DKF algorithms can be classified as either sequential, consensus,
gossip, or diffusion, based on how local sensor nodes communicate with their neighbors to carry
out data fusion. The DKF algorithm, which we implemented, was proposed by Battistelli et al. [58]
and falls into the category of diffusion-based DKF algorithms according to the study of He et al. [37].
The algorithm is fully distributed, robust and achieves local consistency. Another advantage of this
algorithm is its event-triggered communication capability (which reduces the communication burden),
as the nodes will only transmit their local estimate with their close neighbors when the difference
between the present local estimate and the last transmitted local estimate is above a certain threshold.
This threshold determines the transmission rate and it is a parameter that can be varied. This can be
used to make the WSN energy-aware and also energy efficient as nodes can regulate their transmission
rate and thus their energy consumption based on their present energy (battery) level. Nodes with high
battery levels can have a higher transmission rate and thus have more accurate estimates while nodes
with low battery levels can transmit less and thus have less accurate estimates. In this way, the WSN
can be adaptive.

4.3.2. Brief Description of the Kalman Filter Algorithm

The Kalman filter is an information filtering technique for filtering information known to be prone
to error, uncertainty, or noise. The goal of the filter is to take in this imperfect information, sort out
the useful parts of interest, and reduce the uncertainty or noise [92]. There are two types of noise
associated with stochastic estimation, process noise and measurement noise. Process noise can be
explained as the difference between the real system and the model, while measurement noise is the
noise associated with the sensors and instrumentation. The Kalman filter minimizes the estimated
error covariance in a linear stochastic system, has low memory requirements and low complexity [93],
and it is capable of handling situations with a lot of noise or high uncertainty in the data. This therefore
makes it a good candidate for improving the accuracy of noisy measured leak signals and detecting
leaks in WWPM, as nodes are limited in their memory, processing power and energy [8,61,93].

The Kalman filter is based on two steps, comprising a prediction followed by a correction to
determine the states of the filter. This is sometimes called predictor–corrector, or prediction–update [92].

In the first step, the estimated state x, at time k, is predicted from the updated state at time k-1.
The prediction of the current state and the covariance matrix is given by [92,93]:

x̂−k = Ax̂k−1 + Buk (1)

P−k = APk−1AT + Qk (2)

where x̂−k is the predicted state vector at time k, x̂k−1 is the previous estimated state vector, P−k represents
the predicted state error covariance matrix, A and B are matrices defining the system dynamics, uk is
the input vector, Pk−1 is the previous estimated state error covariance matrix, and Q is the process noise
covariance matrix.
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The second step is the correction or update step. This step aims to get an improved estimate by
incorporating new measurements into the predicted estimate using the Kalman gain (Kk).

Kk = P−k HT
(
HP−k HT + Rk

)−1
(3)

x̂k= x̂−k +Kk
(
zk −Hx̂−k

)
(4)

Pk = (I −KkH)P−k (5)

where H is a matrix necessary to define the output equation, R is the measurement noise covariance,
I is an identity matrix, x̂k is the estimated or updated state vector, zk is the measurement at time k and
Pk is the updated state error covariance.

4.3.3. Distributed Kalman Filter Algorithm Implementation

Distributed Kalman Filter (DKF) algorithms have been used extensively in low-cost WSN-based
target tracking applications [37]. They can be used in any application where it is required to improve
the accuracy of a monitored parameter by using redundant information from multiple low-cost sensors
to effectively complement the limitations of a single sensor node. They can be extended to applications
such as navigation systems, environmental and power system monitoring, autonomous robot systems,
large-scale camera networks, wireless channel monitoring, etc.

A number of DKF algorithms have been presented in the literature [37,58,94,95]. In our solution,
we implemented the diffusion-based DKF algorithm proposed by Battistelli et al. [58] as a starting
point to establish the importance of distributed data fusion in improving the leak detection accuracy.
Their study presented a novel event-triggered distributed state estimator based on a consensus Kalman
filtering approach, as well as a transmission triggering condition which essentially requires that the
local estimate and/or covariance of a given node be sufficiently far away from the ones computed
by neighbors before there can be an exchange of data between a node and its neighbors. The paper
addresses Distributed State Estimation (DSE) over a network where each node can process local data
as well as exchange data with neighbors. In their proposed DSE algorithm, each node runs a local
Kalman filter and then, in order to improve its local estimate, fuses the local information with that
received from its in-neighbors [58].

The DKF algorithm proposed by Battistelli et al. [58] consists of four main steps (correction,
information exchange, information fusion and prediction) and every sensor node implementing the
algorithm goes through the iterative process shown in Figure 3. Each node starts by updating a local
information pair, which consist of the local estimate and the estimation error covariance matrix. This is
immediately followed by the exchange of the information pair to the out-neighbors of each node if
and only if the transmission flag of the sensor node is set to 1. The transmission flag is set to one
when the difference between the current updated local estimate and the last transmitted local estimate
exceeds some threshold, which is determined by some transmission parameters designated in the
study as α, β, and δ (which can be varied to achieve a desired behavior in terms of transmission rate
and performance). By this, the algorithm possesses an event-triggered communication capability and
information is only shared when the data currently computed by a node’s out-neighbors are no longer
consistent with the data locally available at the node. The transmission test ensures that in the case
of no transmission, the data currently computed by the out-neighbors of a node are close to the data
locally available at the node, both in terms of mean and covariance, thus maintaining local consistency.
The information exchange step is then followed by an information fusion step where every node
computes a fused information pair from its local information pair and those received from in-neighbors
at the current time step, k. During the information fusion step, each node computes an approximate
local pair for its in-neighbors that did not transmit at time step k (because their transmission flag was
not set), from the most recent local information pair last received from them. As the final step in each
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iteration, the prediction step involves propagating the fused information pair in time by applying the
Kalman filter prediction step to compute the local predicted information pair at time k + 1.
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In our implementation, A and H in the model equations are constants since we are dealing with a
one-dimensional Kalman filter. H is one because it is known that the measurement is composed of
the state value and some noise, while A is one because it is assumed that the next value will be the
same as the previous one. We derived R from the LSM9DS1 datasheet. The linear acceleration typical
zero-g level offset accuracy given in the datasheet is ±90 mg, thus R is 0.0081. Q is obtained after some
experimentation. From the datasheet, the sensor in a steady state on a horizontal surface will measure
0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. We did some experiments
with different Q values (10, 1, 0.1, 0.01, and 0.001) and selected the one that best approximated the
acceleration values at zero-g. Q, equal to 0.001, best approximated the zero-g acceleration values.

For the physical implementation, the proposed DKF algorithm was written in C and the
sensor nodes having the Adafruit feather ESP32 (Huzzah32) microcontroller as the processing unit,
were programmed using the Arduino 1.8.9 Integrated Development Environment (IDE) according to
Adafruit recommendation. The RF24 [96] and RF24Network [97] libraries, which provide the MAC and
Network layer functions were used to control the nRF24L01+ transceiver interfaced to the Huzzah32
via SPI. The firmware uploaded to the nodes after compiling the proposed DKF algorithm using the
Arduino IDE occupied a storage space of 225 kB.

In our preliminary study, which demonstrates how a distributed Kalman filter (a distributed data
fusion technique) can improve the reliability of leak detection in low-cost vibration-based WWPM
systems, the proposed DKF algorithm [58] was implemented on a network of two nodes, with addresses
given by 00 and 01 (octal representation) and the node 00 being the base node or Personal Area Network
(PAN) coordinator. This is because, in this study, we are dealing with a linear WSN, which is the case
of a WSN-based water pipeline monitoring system, as each sensor node has a maximum of two directly
connected neighbors. The ideal is to have a sensor network of at least three sensor nodes to demonstrate
distributed data fusion in a linear WSN. However, a linear WSN consisting of two sensor nodes
provides a firsthand yet precise evaluation of performance, since in a linear WSN, the beginning and
ending nodes of the chain have just one single directly connected neighbor. In addition, the parameters
that determine the information transmission rate of the proposed DKF algorithm, represented in [58]
as α, β, and δ, were given the values 0.001, 40 and 40, respectively, in our implementation.
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5. Experimental Setup

5.1. Simulations

The implementation and deployment of a WSN incurs cost and it is also time consuming. So, it is
important to simulate the operation of a specific design before deploying it. We performed simulations
to evaluate the performance of the proposed algorithms. Simulations were carried out in Cupcarbon
4.2, which is a Smart City and Internet of Things Wireless Sensor Network (SCI-WSN) simulator that is
used to design, visualize, debug and validate distributed algorithms for monitoring, e.g., the collection
of environmental data [98]. It offers two simulation environments; one enables the design of scenarios
with mobility and the generation of natural events and the other enables the simulation of discrete
events in WSNs. CupCarbon simulation is based on the application layer of the nodes. It is composed
of four modules: a microcontroller, radio unit, sensing unit and a battery [99]. It also includes a
script called SenScript, which allows us to program and to configure each sensor node individually.
From this script, it is also possible to generate codes for hardware platforms such as Arduino/XBEE [99].
This feature makes it suitable for simulating distributed algorithms in a WSN environment and the
ability to demonstrate distributed computing in a WSN, since it permits us to write and simulate
applications that will be implemented on real sensor nodes. In addition, in CupCarbon, the energy
consumption can be calculated and this allows us to represent the detailed energy profile of each sensor
node. This allows us to test the feasibility and realistic implementation of a network before its real
deployment. This particular feature of CupCarbon is important to our work, as we are interested in
monitoring the energy consumption of the nodes in our proposed distributed solution.

The simulation setup shown in Figure 4a is composed of two sensor nodes (S1 and S2) and natural
event generators (A4 and A5). The natural event generator enables the generation of analog values and
its objective is to simulate random or given values from the environment. The simulation setup shown
in Figure 4b consists of three nodes (S1, S2 and S3). The simulation depicted in Figure 4b was carried
out to show that the results of the simulation of the DKF algorithm in a linear network composed of
two nodes and a linear network composed of three nodes are similar. A natural event was used to
simulate acceleration values read by the LSM9DS1 IMU sensors. One thousand acceleration values
generated by the natural event were used in the simulations.
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Two scenarios were then simulated using the linear WSN consisting of two sensor nodes. In the
first case, we simulated a scenario where the data measured by both nodes (S1 and S2) were erroneous
(noisy) while in the second case, only the data measured by one of the nodes (S1) were erroneous and
the data measured by the other node (S2) were error free. For each case, we implemented both the
local Kalman filter (without data fusion) and the DKF (with data fusion) and compared the results.
The simulation results will be discussed alongside the experimental results in Section 6 so as to validate
the approach.
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5.2. Laboratory Testbed Setup

A laboratory testbed was installed in the Electrical and Electronic Laboratory of the University of
Buea, Cameroon, based on technical and real-field observations of WDN in Cameroon. The installation
is composed of two plastic water storage tanks of capacity 1000 L (one tank for storage placed on
a tower of height 9 m and one supply tank placed beneath the tower), a U-shaped 13-m long PVC
pipe with an external diameter of 32 mm and an internal diameter of 30 mm for the plumbing part.
This installation distributes water by using an electrical pump (0.7 HP motor) providing a maximum
pump capacity of 40 L/min to fill the upper storage tank. Leakage emulation in the pipeline is realized
by a valve (size of the leak is controlled by the opening of the valve) situated 4 m away from the inlet
of the water into the system. Figure 5 depicts the testbed setup.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 39 

 

in the pipeline is realized by a valve (size of the leak is controlled by the opening of the valve) situated 
4 m away from the inlet of the water into the system. Figure 5 depicts the testbed setup. 

 
Figure 5. Setup of the laboratory testbed. 

Our WSN experimental setup consists of two sensor nodes, namely Node 00, placed one meter 
after the leak position and Node 01, placed one meter before the leak position, as shown in Figure 4b. 
The IMU sensors provide vibration measurements through acceleration monitoring. 

To measure the performance of our leak detection solution using DKF algorithm, we emulated a 
leak at a single location along the pipeline, as shown in Figure 5. In this deployment, the leak location 
is fixed, but variations in the sensors can be made to evaluate the effectiveness of our solution. We 
carried out measurements for two scenarios: a local Kalman filter implementation and a DKF 
implementation. For these experiments, we stored traces of data collected from the two sensors, and 
compared the effectiveness of the approach, i.e., the effect on leak detection when the sensor nodes 
implemented the DKF algorithm and in the case where only a local Kalman filter was implemented. 

5.3. Power Consumption Measurement 

In this sub-section, we describe the development of a power measurement device we call a USB 
power meter that we used to measure the power consumption of the sensor node in order to establish 
the energy profile of our distributed solution. We developed this device for two main reasons: (1) to 
permit us to measure very low currents in the µA range in order to measure the consumption of the 
node when the ESP32 is operating in deep sleep mode (i.e., when the ULP coprocessor is in control) 
and (2) to be able to monitor and store the power consumption of the nodes without physically being 
present (i.e., recording of power measurements collected periodically over a long period of time). 

Current consumption monitoring is a very important aspect for battery-powered sensor nodes 
since they are constrained in terms of energy. Selecting the correct method to monitor the current 
consumption of a sensor node is critical in optimizing the system performance. There are three 
primary approaches used to profile the power of systems and components. They include simulator-
based power estimation, direct measurements, and event-based estimation [100]. We make use of the 
direct measurement method which can be done via operational/difference (milliamps to tens of 
amps), instrumentation (nanoamps to tens of amps), or current sense (tens of microamps to tens of 
amps), and where power can be directly measured both intrusively or nonintrusively. The intrusive 
measurements require inserting precision (shunt) resistors into the power supply lines of components 
under study and use power meters to measure the voltage drop across the resistor. The current 
through the component is calculated by the voltage drop over the shunt resistor divided by its 
resistance. The nonintrusive approach uses ammeters to measure the current flow of the power 
supply lines directly [100]. Since the currents we are measuring are in the range of tens of microamps 
to amps, we used the current sense method. The current sense device we used was the INA226. 

Figure 5. Setup of the laboratory testbed.

Our WSN experimental setup consists of two sensor nodes, namely Node 00, placed one meter
after the leak position and Node 01, placed one meter before the leak position, as shown in Figure 4b.
The IMU sensors provide vibration measurements through acceleration monitoring.

To measure the performance of our leak detection solution using DKF algorithm, we emulated a
leak at a single location along the pipeline, as shown in Figure 5. In this deployment, the leak location is
fixed, but variations in the sensors can be made to evaluate the effectiveness of our solution. We carried
out measurements for two scenarios: a local Kalman filter implementation and a DKF implementation.
For these experiments, we stored traces of data collected from the two sensors, and compared the
effectiveness of the approach, i.e., the effect on leak detection when the sensor nodes implemented the
DKF algorithm and in the case where only a local Kalman filter was implemented.

5.3. Power Consumption Measurement

In this sub-section, we describe the development of a power measurement device we call a USB
power meter that we used to measure the power consumption of the sensor node in order to establish
the energy profile of our distributed solution. We developed this device for two main reasons: (1) to
permit us to measure very low currents in the µA range in order to measure the consumption of the
node when the ESP32 is operating in deep sleep mode (i.e., when the ULP coprocessor is in control)
and (2) to be able to monitor and store the power consumption of the nodes without physically being
present (i.e., recording of power measurements collected periodically over a long period of time).

Current consumption monitoring is a very important aspect for battery-powered sensor nodes
since they are constrained in terms of energy. Selecting the correct method to monitor the current
consumption of a sensor node is critical in optimizing the system performance. There are three primary
approaches used to profile the power of systems and components. They include simulator-based
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power estimation, direct measurements, and event-based estimation [100]. We make use of the
direct measurement method which can be done via operational/difference (milliamps to tens of
amps), instrumentation (nanoamps to tens of amps), or current sense (tens of microamps to tens of
amps), and where power can be directly measured both intrusively or nonintrusively. The intrusive
measurements require inserting precision (shunt) resistors into the power supply lines of components
under study and use power meters to measure the voltage drop across the resistor. The current through
the component is calculated by the voltage drop over the shunt resistor divided by its resistance.
The nonintrusive approach uses ammeters to measure the current flow of the power supply lines
directly [100]. Since the currents we are measuring are in the range of tens of microamps to amps,
we used the current sense method. The current sense device we used was the INA226.

The power measurement device developed for power consumption of the sensor node is based on
the intrusive direct measurement method and is composed of a 100 mΩ shunt resistor, INA226 module,
STM nucleo-32 F303k8 microcontroller, nRF24L01+ transceiver, 128 × 64 OLED display, SD card and
two USB ports. Figure 6 is a block diagram display of the USB power meter.
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The INA226, often used in instrumentation for low current monitoring, is a current shunt and
power monitor with an I2C compatible interface. It was used to monitor both the shunt voltage
drop across the shunt resistor (placed in series with the sensor node) and the bus supply voltage.
The INA226 can be used either in high-side sensing (where a shunt resistor is placed between the
supply voltage and the load) or low-side sensing (where a shunt resistor is placed between the load
and the system ground). High-side sensing was used since it is preferable when dealing with low
currents given that it is more responsive to changes in the current flow and it adds no disturbance to
system ground [101]. The INA226 is designed for a maximum input shunt voltage of 81.92 mV and has
a 16-bit ADC. Thus, the maximum current that can be measured by the device is 819.2 mA and the
resolution is 25 µA in the case where a 100 mΩ shunt resistor is used. Using the 100 mΩ shunt resistor
permits us to be able to measure the current consumption of the ESP32 when it is in the deep sleep
mode (with currents in the µA range). In addition, the voltage drop across the shunt resistor allows
sufficient voltage to power the ESP32. The STM nucleo-32 F303k8 interfaces with the INA226 and
also configures its programmable calibration value, conversion time and averaging mode. For better
accuracy in measurements, the conversion time and averaging mode were configured to 140 µs and 4,
respectively. The OLED display is for displaying the power measurements, the SD card is for storing
the power measurements over a long period of time and the nRF24L01+ transceiver permits the remote
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reading of the power consumption. USB-IN is used to supply power to the measurement board while
USB-OUT is there to power the sensor node.

6. Results and Discussion

In this section, we present and discuss the simulation and laboratory results. In addition, the results
of the power consumption obtained via simulations and physical measurements are also presented.

6.1. Scenarios

This sub-section presents the scenarios used in both simulations and field experiments to validate
our proposed approach.

Two scenarios were simulated. In the first scenario, we simulated a case where the data measured
by both nodes (S1 and S2) were erroneous (noisy) to the same extent, i.e., the measurement noise of
both sensors is correlated while in the second scenario, only the data measured by one of the nodes (S1)
were erroneous while the data measured by the other node (S2) were error free, i.e., the measurement
noise of both sensors are uncorrelated. For each scenario, we implement both the local Kalman filter
(without data fusion) and the DKF (with data fusion).

For the field experiments, we carried out measurements for two scenarios: a local Kalman filter
implementation (i.e., Kalman filtering requiring no fusion of estimates with neighboring node) and a
DKF implementation (i.e., Kalman filtering requiring fusion of estimates with neighboring node).

6.2. Validity of Approach on a Two-Node Linear Wireless Sensor Network

In a chain of sensor nodes forming a linear WSN, the nodes at the beginning and ending of the chain
have just one directly connected neighbor, while all the intermediate nodes have two directly connected
neighbors each. To demonstrate distributed data fusion in a linear WSN, an ideal case is to have a
network of at least three nodes, as it represents all the relationships that can be found in a larger linear
WSN. Our laboratory testbed only enables us to perform a two-nodes physical evaluation. For this
reason, we restrained our first approach to two nodes for simulation and physical experimentation.

To validate that this two-nodes approach is still valid, we simulated a DKF algorithm
implementation on a two-node linear WSN (Figure 7a) and three-node linear WSN (Figure 7b).
Figure 8 depicts a comparison of the root mean square error (RMSE) of node S1 when the simulations
were performed in both two-node linear network and three-node linear network. The RMSE of S1 in
the two-node linear network converges to 0.064 while it converges to 0.066 in the three-node linear
network. From these results that confirm the strong similarity between Figure 7a,b, we can infer that a
linear WSN consisting of two sensor nodes can be used to validate the feasibility and performance
evaluation at the node level. We will continue our analysis on a linear WSN comprising of two nodes.
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6.3. Comparison of Results from the Two Simulation Scenarios

In this sub-section, we present and discuss the results of vibration estimates obtained for the
simulation scenarios described in Section 6.1.

Figures 9 and 10 show the results obtained from simulations in CupCarbon 4.2 when the DKF
algorithm was implemented on both nodes (S1 and S2). Figure 9 illustrates the results obtained for
the scenario where the measurements of both sensors are correlated (noisy to the same extent) while
Figure 10 illustrates the results obtained for the scenario where the data measured by both sensor
nodes are uncorrelated (measurements from the sensor node (S1) are erroneous and that of the other
sensor node (S2) are error free).

From the results depicted in Figure 9, it can be seen that there is not a great improvement in the
estimates after filtering and fusion, since the measurements of both nodes are noisy to the same extent
in this scenario. This is because when the number of incorrect data sources are greater than the number
of correct data sources, the overall performance of the fusion process can be reduced [38]. In Figure 10,
there is a great improvement in the estimates of the sensor node (S1) with noisy measurements, since
it fuses its local estimate with the local estimate of sensor node S2 with noise-free measurements.
The results of sensor S1 in Figure 10 are closer to the true value compared to those in Figure 9. When the
local Kalman filter algorithm was implemented, there was no difference in the results obtained from
both scenarios. There was no improvement in the estimates of S1 even when its close neighbor S2 had
error-free measurements. This is because there is no fusion of local estimates from neighboring nodes
in the local Kalman filter implementation. This result establishes the importance of distributed data
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fusion in improving accuracy in a fully distributed solution. We validate this assertion via physical
measurements in Section 6.3 where we implement both the local Kalman filter and DKF algorithm for
leak detection in a laboratory WDN and compare their performance.Sensors 2020, 20, x FOR PEER REVIEW 24 of 39 
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6.4. Comparison of Results from the Two Experimental Scenarios

In this section, we present and discuss the results obtained for the physical experimentation
scenarios described in Section 6.1 so as to validate the simulation results presented in Section 6.2.

Figures 11 and 12 are results obtained from the laboratory testbed. Figure 11 represents the
data obtained from Node 00 when the DKF algorithm was implemented on both sensor nodes while
Figure 12 represents the results obtained when only a local Kalman filter was implemented on both
sensor nodes without distributed data fusion.

When there is no leakage, the measured acceleration on the pipe surface is 1.00 g while the
estimated acceleration on pipe surface after performing Kalman filtering is 0.99 g. As shown in the
results obtained in the field (Figure 11), the estimated acceleration of the pipe when there is no leakage
is below 1.01 g while an estimated acceleration greater than 1.01 g corresponds to a leakage on the pipe.
This is because when there is a leak, there is a fast drop in pressure, leading to an increase in the flow
turbulence which is significantly responsible for the vibrations of the pipe walls, since the source of
vibration is dissipated energy caused by turbulence.
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Comparing the results in Figure 11 (where we implemented DKF) with those of Figure 12 (where
we implemented only local Kalman filter), reveals that we can easily isolate a leakage scenario from a
non-leakage scenario in the case where we used DKF. This increases the performance or reliability
of detecting leaks and minimizes the rate of false alarms. However, it was difficult to distinguish
a leakage scenario from a non-leakage scenario when we used only a local Kalman filter. The data
depicted in Figure 12 have a higher likelihood of producing false alarms since the estimated acceleration
computed by the local Kalman filter still has a lot of uncertainties. As shown in Figure 12, the estimated
acceleration is fluctuating rapidly over short time periods. Applying the fixed threshold acceleration
of 1.01 g will result in a higher rate of false alarms. This leads to multiple alarms and associated alarm
clears as an alarm is declared each time the estimated acceleration fluctuates above the threshold value
of 1.01 g and as it fluctuates back below the threshold, the alarm clears.

Examining the results from simulation and physical deployment, we can draw the conclusion
that with the proposed DKF algorithm implemented, there is a bit of improvement in the reliability
of leak detection compared to when the local Kalman filter is implemented. This improvement can
be attributed to the distributed data fusion capability of the DKF algorithm. However, one very
challenging issue for distributed algorithms in a WSN is their robustness to failed transmissions during
the communication process. The results obtained in simulations assumed that no messages were lost
during the communications between neighboring sensor nodes and also did not account for delays
due to packet loss. Notwithstanding, the results obtained from simulations are very close to what we
observed from the physical experimentation. We also observed that in the physical implementation the
packet loss rate was very low (<5%). This can be explained by the fact that, as a result of distributed
computing, the number of communicating nodes for each node is limited to just the directly connected
neighbors and which when applied to our context of a linear WSN limits the number of directly
connected neighboring nodes to an upper bound of 2. By properly making use of the transmission time
schedule capability of the RF24Network [97] library, the number of collisions is significantly reduced,
thus reducing the transmission rate. In addition to this is the event-triggered capability of the proposed
DKF algorithm [58] that we implemented in this our preliminary study. The event-triggered nature of
the proposed algorithm reduces the packet transmission rate which also reduces the packet loss rate.
From the results presented by the authors in [58], it is clear that the transmission rate of the proposed
algorithm is not uniform over time [58]. The proposed algorithm has a higher packet transmission
rate at the beginning when the estimation error is large. The packet transmission reduces when the
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estimation error is low due to consistency in local estimates and increases again in correspondence
with variations in the monitored parameter.

6.5. Power Evaluation of Proposed Distributed Kalman Filter Solution

In this sub-section we present the power profile of our proposed DKF solution obtained from
the simulations and physical measurements. In addition, we also present results from physical
measurements that show how the power consumption of the solution can be greatly reduced by using
the ULP coprocessor of the ESP32 microcontroller serving as the processing unit of the sensor node.

6.5.1. Simulation of Power Consumption

We used the current consumption data from the datasheets of the different components (ESP32,
nRF24L01+, and LSM9DS1) that constitute our sensor node. These data are used in CupCarbon to
emulate the power consumption of the sensor node when operating in the different states (sensing,
transmitting, computing, receiving, sleeping). Figure 13 shows the current profile of the sensor node
derived from simulations when the ESP32 is operating at 240 MHz. This is what is used by the
simulator to compute the power consumption of each sensor node when each of the distributed
algorithms is being simulated. With this, we can have a datasheet-based energy model of the power
consumption of nodes embedding every selected distributed algorithm we are going to study before
physical implementation. We used the physical implementation to validate the results of the power
consumption obtained from simulation. In addition, the state of charge of the battery of each sensor
node can be obtained from CupCarbon. This enables the identification of critical nodes and can give
us information on the lifetime of the sensor network when a given distributed algorithm is being
implemented. This provides an initial revelation of which algorithm is more power efficient. Finally,
from simulations in CupCarbon, we can also obtain information of the number of messages transmitted
which reveals the bandwidth consumption of a given distributed algorithm.Sensors 2020, 20, x FOR PEER REVIEW 28 of 39 
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To evaluate the energy budget of the node per cycle, we established Table 3 from the datasheets of
our sensor node’s contituent components.
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Table 3. Simulated current consumption of the sensor node at different states.

ESP32 Speed
(MHz) State Current Consumption

(mA)
Duration When Node
Is at This State (msec)

Energy
Consumption (mJ)

80

CPU idle + radio down 20 50 3.3

CPU idle + radio
listening 31.8 1000 105

CPU active + radio
listening 36.8 900 109

CPU active + radio
transmitting 48.1 50 7.9

240

CPU idle + radio down 40 50 6.6

CPU idle + radio
listening 51.8 1000 171

CPU active + radio
listening 79.8 900 237

CPU active + radio
transmitting 91.1 50 15

As shown in Table 3, the sensor node will consume most its battery energy when it is listening
for packets. Since we are dealing with a realtime application, where the loss of packets needs to
be minimized, the radio has to be continuously listening for packets. In Section 6.5.3, we present a
corresponding table of the node’s energy consumption at different states, obtained from measurements,
and compare it with those obtained from simulations.

6.5.2. Power-Consumption Measurement on Laboratory Testbed

We performed power consumption measurements on the nodes of our real laboratory testbed.
The average power consumed by the node, as depicted by Figure 14, is about 100 mW (35 mA at 3.3 V),
which is relatively very high for an application that will be powered by a battery. The high power
consumption is explained by the fact that our current implementation uses the ESP32 in modem sleep
mode (with current consumption in the range 20–31 mA at 80 MHz clock speed) and the radio was
always in the listening mode throughout. In modem sleep mode, the ESP32 is actually a power-hungry
chip and, as such, is not suitable for battery-powered sensor nodes. One way of reducing the power
consumption of the sensor node is by reducing the amount of time for which the main core of the
ESP32 is active by preferably using the ULP coprocessor for basic control.
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In order to reduce the node’s power consumption, we decided to harness the ULP coprocessor of
the ESP32 by putting the node frequently into deep sleep mode (with current consumption in the range
10–150 µA). Thus, the node will only be active for very short periods of time, when it needs to transmit
data and perform fusion. Figure 15 illustrates the results obtained from putting the ESP32 main core
into deep sleep mode while using the ULP coprocessor. The ESP32 main core was programmed to
sleep for 2 s while the ULP coprocessor was functional and it was awakened from sleep using an
internal interrupt. In this demonstration, we used the timer interrupt, which awakened the ESP32
main core when the 2 s sleeping period expired.Sensors 2020, 20, x FOR PEER REVIEW 30 of 39 
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As shown from in the results displayed in Figure 15, when the node is in deep sleep mode,
the measured current consumption of the node can be as low as 11.8 mA, which corresponds to the
current consumed by the nRF24L01+ transceiver in listening mode (11.8 mA), the LSM9DS1 IMU when
the accelerometer is operational (600 µA) and the current consumed by the ESP32 in deep sleep mode
(10 µA~150 µA). Continuously putting the node into deep sleep mode and only waking it up and
keeping it awake for short periods of time to perform transmission and data fusion with neighboring
nodes will greatly reduce the power consumption of the node and increase the lifespan of the WSN.
The node only wakes up when it receives an external interrupt from the nRF24L01+ (i.e., when it
receives data from a neighboring node) or when it receives an external interrupt from the LSM9DS1
(i.e., signifying the threshold acceleration value has been exceeded and the possibility of a leakage).

A table showing the energy consumption of the sensor node at different states, obtained from
physical measurements, is provided in Table 4 below for analysis and for the validation of the energy
consumption of the simulation model presented in Table 3.

The ESP32, when operating in modem sleep mode at a speed of either 80 MHz or 240 MHz,
is not energy efficient and not suitable for a WSN application that is to be battery powered. However,
as shown in the results in Figure 15, proper optimization and harnessing of the ULP coprocessor of
the ESP32 while putting the ESP32 core to sleep can drastically reduce the power consumption, thus
enabling it to be used for a battery-powered applications.
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Table 4. Measured current consumption of the sensor node at different states.

ESP32 Speed
(MHz) State Current Consumption

(mA)
Duration When Node
Is at This State (msec)

Energy
Consumption (mJ)

80

CPU idle + radio down 23.7 N.A N.A

CPU idle + radio
listening 31.8 1000 105

CPU active + radio
listening 35 900 104

CPU active + radio
transmitting 51 50 8.4

240

CPU idle + radio down 39 N.A N.A

CPU idle + radio
listening 50 1000 165

CPU active + radio
listening 69.3 900 206

CPU active + radio
transmitting 102 50 16.8

6.5.3. Energy Budget Analysis and Validation of Simulation Model

In this sub-section, we perform an energy budget analysis of the sensor node obtained from
physical measurements of the power consumption and also validate the simulation model of the sensor
node’s power consumption.

Table 4 depicts the measured current consumption of the sensor node at different states when the
ESP32 is operating at 80 MHz and 240 MHz clock speed.

As shown in Table 4, much of the sensor node’s energy is consumed when the radio is listening.
The sensor node’s radio transceiver (nRF24L01+) has to always be in the listening mode so as to
prevent the loss of packets since we are dealing with a real-time application and also because the
communications are asynchronous. Even when we harness the ULP coprocessor of the ESP32 to reduce
the node’s current consumption as shown in Figure 15, we still incur much current consumption from
the radio transceiver which has to be left in listening mode (consuming 11.8 mA) in order to prevent
the loss of packets. One way to reduce the power consumption of the sensor node can be to incorporate
an ultra-low power wake-up receiver to the sensor node’s circuitry. By this, we can have the possibility
of putting the nRF24L01+ transceiver in the power down mode (which consumes 900 nA), while still
preventing the loss of packets required for our real-time application. The nRF24L01+ transceiver
will only enter listening mode from power down mode when there is an interrupt from the wake-up
receiver indicating the availability of a packet. Though this will make the sensor node more energy
efficient and thus suitable for a battery-powered application, it will nevertheless increase the cost of
the sensor node.

Furthermore, from the physical measurements taken when the ESP32 of the sensor node was
operating at 80 MHz and 240 MHz, we observed that the node operating at 80 MHz is sufficient to run
the DKF algorithm and consumes a current which is approximately half of what it consumes when
operating at 240 MHz, as shown in Table 4.

Finally, when comparing the power consumption of the sensor node obtained from the model
and those obtained from physical measurements, we realize that the power consumption of the node
derived from the model is close to that obtained from physical experiments. For instance, the current
consumption of the sensor node when transmitting is 91.1 mA derived from the model and 102 mA
obtained from physical measurements. From these results, we realize that the power consumption
of the sensor derived from simulation can provide us with a firsthand, yet precise, approximation of
the power consumption of sensor nodes when embedded with every selected distributed algorithm
we intend to study before physical implementation. This can be used to quickly evaluate the effect of
every selected distributed algorithm’s power consumption on the lifespan of the WSN before physical
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implementation, thus revealing which distributed algorithm is more energy efficient. This model will be
greatly utilized in a future study where we will evaluate a number of different DKF algorithms for their
power consumption and their performance in reliably detecting leaks using low-cost vibration sensors.

6.6. Simulation of a Global Network

Now that we have demonstrated via simulations and physical experiments that the distributed
data fusion capability of a DKF can be of interest in improving the reliability of leak detection using
low-cost vibration sensors, and also established a model for the power consumption and validated it
via physical experiments, we intend to extend our solution to a large-scale WSN. The goal is to measure
interesting elements such as the lifetime of the network and also carry out real large-scale analyses.

In this section, we compare the power consumption and bandwidth consumption for the proposed
distributed Kalman algorithm (that implements distributed data fusion) and the benchmark centralized
Kalman filter algorithm (that implements centralized data fusion), in a sensor network consisting of
10 sensor nodes (S1–S10) connected in a linear topology and simulated in CupCarbon as shown in
Figure 16. For the power consumption, we display the results of the state of the battery for each sensor
node for both the cases where our proposed DKF algorithm and the benchmark centralized Kalman
filter (CKF) were implemented. For the bandwidth consumption, we provide results for the number of
messages transmitted for both the proposed DKF algorithm and the benchmark CKF. In the distributed
implementation, the sink node is not involved, whereas in the centralized implementation, the sink
node is involved in the fusion of the data obtained from all the sensor nodes. This requires numerous
multi-hop communications and the sensor node (S10) directly connected to the sink node is involved
in relaying the data from all the other sensor nodes to the sink. This makes S10 a critical node in the
centralized implementation since it has a higher probability of developing an energy hole, which will
affect the lifespan of the WSN. Figures 17 and 18 display the simulation results of the energy profile for
distributed and centralized solutions, respectively, for a simulation time of 1 day (86,400 s).
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From Figure 17, we observe that, by implementing distributed computing using the proposed DKF
algorithm, the rate of discharge of all the sensor nodes in the network is close to uniform. In addition,
comparing the energy consumption of the proposed DKF algorithm (Figure 17) with that of CKF
(Figure 18), we realize that the energy consumption of the proposed DKF is less than that of CKF.
Comparing the results of Figures 17 and 18, we realize at time t = 80,000 s, none of the sensor nodes in
the DKF implementation have a battery state below 1.8 × 104 J, whereas all the sensor nodes except
S1 in CKF implementation had crossed that state at simulation time t = 80,000 s. S1 is an exception
because it is involved in less multi-hop communications compared to the other nodes. From the results
obtained, we observed that for a day period (86,400 s) sensor node S10 had exhausted 47.8% and
3.6% of its battery energy in the CKF and DKF implementations, respectively. We also observed that
the nodes’ energy consumptions in the DKF are almost balanced and can lead to extension of the
lifespan of the WSN since the likelihood of an energy hole developing is very low. However, in the
CKF implementation, the nodes’ energy consumptions are not balanced. There is a greater likelihood
of an energy hole occurring at S10. This shortens the lifespan of the WSN.

As a comparison of the bandwidth consumption of the DKF and CKF implementation, results in
CupCarbon revealed that 198,380 and 3,265,479 messages were transmitted for the case of DKF and
CKF implementations, respectively. From the results of the simulations, we observe that the bandwidth
utilization of CKF is about 16 times that of the proposed DKF.

Though the CKF algorithm is Bayesian optimal, it has a very poor performance when it comes
to energy consumption and bandwidth utilization. Other drawbacks are its lack of scalability, high
degree of latency, and lack of robustness. This makes it an infeasible solution for large-scale WSNs.

6.7. Conclusion of Experimentation and Future Work

This study showed the feasibility of performing distributed computing in a WSN. With most of
the state-of-the-art studies of distributed computing in WSN being theoretical and validated based
on simulations, we performed the physical demonstration of distributed computing in WSN by
implementing a DKF algorithm, proposed by Battistelli et al. in [58], to validate our simulation results.
Simulations and physical experimentations were first performed on a two-node linear WSN and,
finally, simulations and experimentation on a larger linear WSN are proposed for a future work.

The results obtained from simulations and field experiments reveal the importance of distributed
data fusion in improving the reliability of the monitoring system when implementing distributed
computing in WSN. Since the nodes make use of low-cost sensors and are deployed in environments
where they can be exposed to circumstances that might interfere with measurements, the measurements
may be imprecise at certain moments. In addition, even when environmental conditions are ideal,
sensors may not give perfect measurements [38]. Data fusion can combine measurements from the
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multiple sources to obtain improved data that is of greater quality or greater relevance since all the
sensors cannot be affected by noise to the same extent. Our results from both simulations and physical
measurements prove this to be true. Furthermore, the sensing capability of each sensor node is restricted
to a limited area. By fusing the data from a number of sensor nodes, each sensor node, to some extent,
can have a global view of the overall parameter monitored and this can improve the reliability. However,
the greater number of sensor nodes with incorrect data compared to the number of sensor nodes with
correct data, the greater the reduction in the overall performance of the fusion process. This makes
distributed data fusion, which limits fusion only among neighboring nodes, advantageous. A number
of techniques for the distributed fusion of data from multiple low-cost sensor nodes exist. In [37],
He et al. organized them into sequential-based, consensus-based, gossip-based and diffusion-based
depending on how the nodes communicate with their neighbors in order to obtain optimal data from
the fusion process. An optimal distributed data fusion algorithm will be one that that converges
faster to the optimal value and requires less data transmission. In this study, the DKF algorithm
proposed by Battistelli et al. [58], which we implemented, falls under diffusion-based distributed
data fusion algorithms and distributed state estimation algorithms that limit the communication
resources, according to the study of He et al. [37]. From the results we obtained, the implemented DKF
algorithm [58] reliably separated a leakage scenario from a non-leakage scenario, it is fully distributed,
which makes it scalable and useful for implementation in a fully distributed WWPM solution, and also
has a low communication burden. It was selected for this initial investigation of how distributed data
fusion affects the reliability of leak detection in WWPM because of its fully distributed nature and low
communication burden resulting from its event-triggered communication ability. However, in a future
study, we will experiment on other distributed data fusion algorithms with the best performances
based on the results from [37] and investigate which of the distributed data fusion algorithms are
most appropriate for our fully distributed solution for WWPM (i.e., the one that provides greater leak
sensitivity, greater reliability in relation to leak detection, a lower response time and a lower power
consumption).

7. Conclusions and Perspectives

In this study, we proposed a fully distributed solution for leak detection in WSN-based Water
Pipeline Monitoring (WWPM). In our proposed solution, all the processing required for leak detection
is performed at the sensor nodes, without needing a centralized station for the processing of leak signals.
The aim was to eliminate multi-hop communications, reduce latency, reduce the sensor node’s power
consumption and extend the lifespan of the WSN. We used a distributed Kalman filter (combination of
a local filter and distributed data fusion) for processing the vibration signals read by an accelerometer
attached to the pipe surface in order to detect the occurrence of leakages on the pipeline. Our results
show the feasibility of applying distributed computing for leak detection in WWPM and establish the
importance of distributed data fusion in improving the reliability of the leak detection system. In this
study, we implemented a comprehensive design approach, involving simulations, system design,
laboratory experimentation and test under real conditions. We also provided the power consumption
of our solution, obtained via both simulations and physical measurements, and proposed ways to
reduce the node’s power consumption in future work in order to extend the lifespan of the WSN.

In the future, we intend to improve the capacity of our laboratory testbed by deploying a larger
linear WSN consisting of at least ten sensor nodes, where we will experiment on other DKF algorithms
in order evaluate their performance and power consumption and finally define the best solutions for a
fully distributed WWPM. The results of the best DKF will be compared with the results of other leak
detection techniques already available in the literature in terms of sensitivity, accuracy, specificity and
power consumption.
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